Advanced Math

DeMoivre's Theorem :

if z is a complex number and n is a positive integer, then

$$
z^{\mathrm{n}}=r^{\mathrm{n}}[\cos (\mathrm{n} \theta) i \sin (\mathrm{n} \theta)]
$$

*1) $(3-7 i)^{5=}$
nth Roots of Complex Numbers :
For a positive integer n, the complex number $z=r(\cos \theta+i \sin \theta)$ has exactly n distinct roots given by

$$
\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right)
$$

where $k=0,1,2, \ldots, n-1$

Find the following root:
*2) $\sqrt[4]{3-7 i}$

